
Getting started
Now you're set up, launch Construct 2. Click the File button, and select New.

You will see the 'Template or Example' dialog box.

This shows a list of examples and templates that you can investigate at your leisure. For now, just click
on 'Open' at the bottom of the box to create a blank, empty new project. Construct 2 will keep the entire
project in a single .capx file for us You should now be looking at an empty layout - the design view
where you create and position objects. Think of a layout like a game level or menu screen. In other
tools, this might have been called a room, scene or frame.

Size the layout

First of all, we need the layout (level) to be a bit bigger than the default. Left-click a space in the layout
and the Properties Bar will display Layout Properties. Change the size of the level to 4000 x 2048.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12864/filenew.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12865/newprojdialog65_2.png

Let's tile the background image across the layout. Double-click a space in the layout. This will bring up
the Insert Object dialog. Double click the Tiled Background object to insert it.

The mouse turns in to a crosshair. It doesn't matter where you place it initially, so just left click
somewhere in the layout. The Image editor opens so you can enter the image to tile. Let's import the
tiledplatformerbg.png file from the sprite pack. Click the Open icon to import an image.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12866/layoutsize.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12867/tiledbackground.png

Select the tiledplatformerbg.png file, then close the image editor. You should see part of the
background image in the layout.

We need to size the background to cover the entire layout. Make sure it is selected (left click it in the
layout) and its properties should appear in the Properties Bar. To make it cover the entire layout, set
its Position to 0, 0 and its Size to 4000, 2048 (the same size as the layout).

The background image is pretty big, so it's hard to see it all at once at the current zoom level. Let's try
zooming out to preview more of it.Hold Control and scroll the mouse wheel down to zoom out.
Alternatively, press View - Zoom out in the ribbon a couple of times. You should be able to see the
entire layout, a bit like this:

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12868/loadimagefromfile.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12869/tiledbgsize.png

Note the dashed outline in the top left is the size of the window compared to the rest of the layout.
Press Ctrl 0 to zoom back to 100%, or View - Zoom to 100% in the ribbon. You're probably zoomed in
to the middle of the layout now. Use the scrollbars to navigate back to the top left corner of the layout.
You can also click and drag the middle mouse button to 'pan' around the layout, or hold space to do the
same if you don't have a middle mouse button.

Adding a layer

Okay, now we want to add some more objects. However, we're going to keep accidentally selecting the
tiled background unless we lock it, making it unselectable. Let's use the layering system to do this.

Layouts can consist of multiple layers, which you can use to group objects. Imagine layers like sheets
of glass stacked on top of each other, with objects painted on each sheet. It allows you to easily arrange
which objects appear on top of others, and layers can be hidden, locked, have parallax effects applied,
and more. For example, in this game, we want everything to display above the tiled background, so we
can make another layer on top for our other objects.

To manage layers, click the Layers tab, which usually is next to the Project bar:

You should see Layer 0 in the list (Construct 2 counts starting from zero, since it works better like that
in programming). Click the pencil icon and rename it to Background, since it's our background layer.
Now click the green 'add' icon to add a new layer for our other objects. Let's call that one Main. Finally,
if you click the little padlock icon next to Background, it will become locked. That means you won't be
able to select anything on it. That's quite convenient for our tiled background, which is easy to
accidentally select and won't need to be touched again. However, if you need to make changes, you can
just click the padlock again to unlock.

The checkboxes also allow you to hide layers in the editor, but we don't need that right now. Your
layers bar should now look like this:

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12871/layerstab.png

Now, make sure the 'Main' layer is selected in the layers bar. This is important - the selected layer
is the active layer. All new inserted objects are inserted to the active layer, so if it's not selected, we'll
be accidentally inserting to the wrong layer. The active layer is shown in the status bar, and also
appears in a tooltip when placing a new object - it's worth keeping an eye on.

Adding tiles
Now we need to add some tiles. We will use tilester the second.png from the handout folder. Let's
import these to a Sprite object and use it as a tile object.

Like you did for Tiled Background, double-click a space in the layout to insert a new object. This time,
choose Sprite. The mouse turns to a crosshair again. Click somewhere in the middle of the screen.

The Image Editor opens up, but with some extra windows, because Sprites can be animated. However,
we're not going to have the animation playing - its speed will be 0. We'll have a tile in each frame of the
animation. Then, we can switch which tile is showing by changing the animation frame.

Right click a space in the Animation Frames pane at the bottom, and pick Import sprite strip.... This
lets us cut up grids of images in to animations, which also works with tile maps.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12872/layersbar.png

A file open dialog appears. Pick the file tilester the second.png from the folder. Construct 2 then needs
to know how many tiles are in the image. You'll notice tilester the second..png is a 1X3 grid of tiles. It
might come up like this automatically. Otherwise Enter 3 and 1 and click OK.

Give Construct 2 a moment to cut up the tiles. Now you should have all the tiles imported as animation
frames! We don't need the first blank frame any more though, so right click on it and select delete.

You might want to resize the Animation Frames window bigger to get a better view of your tiles. Also,
you can right-click a space and change the thumbnail size to Large if you prefer big thumbnails.

By default the animation speed is 5, which means tiles will keep changing their image. We want tiles to
stay on their current frame, so let's make sure the animation speed is 0. Select the Default animation in
the Animations window.

The Properties Bar now shows properties for the animation. Set its Speed property to 0.

Now the tiles won't keep changing their image - they'll stay on the same frame. Close the image editor
by clicking the X on one of the three floating windows. Your Sprite tile should now be in the layout!

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12876/defaultanimation.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12877/animspeed0.png

With it selected, change its name from Sprite to Tile in the Properties Bar. It's always a good idea to
give objects an appropriate name.

Creating scenery from tiles

Notice the Sprite object has an Initial frame property. We can use this to switch the current tile. Select
the Tile object and change its initial frame to 0:

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12879/spriteinitialframe.png

Notice the image changes to reflect the tile in animation frame 0. This is how we can set up different
tiles across the level.

Hold Control and click and drag the tile. You'll create another tile object. Do this again so we have 3
tiles in a row. Select the middle one and set its initial frame to 1. Do the same for the one on the right,
but make its initial frame 2. You should now have something like this:

If you're wondering how to double-check which frame number corresponds to which tile, just double-
click the tile object. The image editor comes up again with the animation windows where you can
check. Remember you can control drag a tile and it makes another tile of the same type, so you don't
need to keep typing in initial frames.

Enabling snap to grid

It's going to be a headache if we have to line up these tiles by hand! You can enable a grid to make this
easier. In the ribbon, click View and enable Snap to Grid. The default grid size of 32x32 is fine. Our
tiles are 128x128, which is a multiple of 32. This makes it easy to snap together tiles whilst still giving
some freedom in positioning.

Try dragging around the tiles now. You should find they snap to a 32x32 grid. Now it should be easy to
snap the three tiles together.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12881/snaptogrid.png

Adding the Player sprite
Let's add a sprite for the player. As before, double-click a space in the layout to insert a new object,
and choose Sprite. When the crosshair comes up, click somewhere above the tiles. The Image Editor
will appear.

Let's import the sprite strip for the player's idle animation. As before, right click the Animation Frames
window and select Import sprite strip....

Choose the file player idle.png. Note that's the complete sprite strip, not one of the animation frames.
You can also import the sequence of files with the Import frames... option, but let's stick to this way for
now.

Because the strip is not square, Construct 2 guesses the number of frames. It should correctly identify
that there are 4 frames. Click OK and the frames are imported.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12883/importspritestrip.png

Note we still have the default blank frame at the start. Right click and delete that again. You should
now have a sequence of 4 animation frames for the player's Idle animation.

Cropping

If you might notice a sprite has some empty transparent space around them, you should crop it. This is
common after importing images. However, it's bad practice to leave it there - it wastes memory and can
make collisions less reliable.

There's a quick way to get rid of it, though. Hold shift and press the Crop button on the image editor
toolbar.

If you didn't hold shift, only that frame is cropped, so make sure you have shift down when you click it
to crop the entire animation. The player image should now be nicely cropped, with no unnecessary
space.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12885/playeremptyspace.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12886/imageeditorcrop.png

Setting the origin

The origin is the center, or "hot spot", of the object. In platformers, it's best to have the origin by the
player's feet. This means if the animation changes height as it plays, they grow upwards, rather than in
to the floor.

To set the origin, click the Set origin and image points tool in the image editor.

You should notice a red spot appear on the player. That's the origin. You can click to change it.
However, we want it bottom-middle aligned. We can quickly assign this by hitting 2 on the num pad (if
num lock is on). If you don't have a num pad (e.g. some laptops), you can right click Origin in the
Image points window that popped up and choose Quick assign - Bottom.

It's a hassle to do this for each and every frame, but luckily there's another short-cut: in the Image
points window that popped up, right click Origin and click Apply to whole animation.

Bingo! The origin should be set on every animation frame.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12887/playercropped.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12888/origintool.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12889/applytowholeanimation.png

Loop the animation

Click the Default animation in the Animations window. Rename it to Idle.

In the Properties Bar, change the Speed of the animation to 9 and set Loop to Yes.

Right click the Idle animation in the Animations window and select Preview. You should see the player
bobbing up and down gently. All done! Close the animation preview and the image editor. You should
see your player in the layout.

Rename the object to Player in the Properties bar, since we're being organised.

Adding behaviors
Construct 2 comes with lots of behaviors. These make your objects work in pre-defined ways, which
often saves loads of time. It's possible to re-do everything the behaviors do in the event system, but it is
often difficult and time consuming to do that. That's why behaviors are really handy to get your game
up and running quickly!

The Platform behavior can take care of the complexities of platform movement for us. However,
there's one important tip for using it: the behavior should be applied to an invisible rectangle object,
and the player positioned on top. The Platform behavior works much better if the object with the
behavior doesn't animate, since changing animation frame can leave the object partly sticking in to a
wall which can confuse the Platform behavior. Also, it avoids silly collision situations like your player
hanging off a ledge by their nose or something they're holding.

So we need to make an invisible square for the movement first. Double-click the layout to add a new
sprite again, and this time import a square like below. (Right-click and 'save as' if you need it.)

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12890/renameanimationidle.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12891/animspeedandloop.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12892/square1.png

As before, we should have the origin at the bottom. So click Set origin and image points again and
press 2 (or use the quick assign menu) to position the origin at the bottom.

Close the image editor. You should now see it in the layout. Resize it to roughly the same size as the
player's body as shown below - this size is 66x97.

If you have trouble with the box covering the player sprite, click on the player sprite in the layout and
change the z order to be on top.

Rename this
object to

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12893/playerboxhotspot.png

PlayerBox since it's the box for movement and collision testing for the player. Also, in the Properties
Bar, set Initial visibility to Invisible since we don't want to see it.

We also want to give the Platform movement to the PlayerBox object for more reliable collision
detection. Still in the PlayerBox's properties, click Add / Edit by Edit behaviors in the properties bar.
In the dialog that appears, click the green plus button.

Double-click the Platform behavior.

You should see that some new properties for the platform movement have appeared in the Properties
bar. You can tweak the movement settings like speed and acceleration. Let's make the jumps a little bit
more snappy. Set the Jump strength to 1100 and the Gravity to 2500.

We also want the screen to follow the player, so click the green plus again and add the Scroll To
behavior.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12895/addplayerboxbehavior.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12896/platformbehavior.png

Once you've added both behaviors, close the Player behaviors dialog.

Adding the Solid behavior

The platform movement needs to know what objects it can land on. The player will fall through any
objects which don't have the Solid behavior. So this time select the Tile sprite and add a behavior for it,
this time choosing the Solid behavior.

We just now need to position the player on top of the PlayerBox. Switch to Event Sheet 1. This is
where we define the game's logic using Construct 2's event system.

Creating events

Events work by testing if a series of conditions have been met. If they have, the actions run.

In this case, we always want to position the player on top of PlayerBox. To do this, we should update
its position every tick, or frame of the game.

Double-click a space in the Event Sheet View to create a new event.

Double-click the System object, which contains the Every tick condition.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12897/switchtoeventsheet.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12898/addsystemcondition.png

Now we have an empty event which will run its actions every tick:

Click 'Add action'.

We want to position Player, so double-click 'Player'.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12899/everytickcondition.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12900/everytick1.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12901/addplayeraction.png

Double-click Set position to another object. For Object, click <click to choose> and pick PlayerBox.
Leave Image point as 0 (that means the origin). Click 'Done'. The finished event should look like this:

Hopefully this makes sense: we always position the player on top of the PlayerBox object, which is the
object with the movement.

Run the game by clicking the green 'play' arrow in the title bar.

Move and jump with the arrow keys. You've got your first basic platformer up and running!

Problems

If you play around you might notice some problems:

1. The player doesn't face left.

2. There aren't any other animations yet.

Let's sort these out! First of all, number 1: let's get the player turning left and right.

First, switch back to the Layout view using the tabs at the top. Double click the layout to insert an
object again, and insert the Keyboard object. Since it's just an input object you don't need to place it
anywhere - it just enables keyboard input for the whole project.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12902/setpositionaction.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12903/setpositionevent.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12904/rungame.png

Instead of creating a whole new animation with the player facing left, we can simply use Construct 2's
Set mirrored action, which will automatically mirror the object to make it appear to be facing left
instead of right.

Switch back to the Event Sheet. We're going to make a new event with the condition "On left arrow key
pressed", and the action "Set player mirrored".

Double click a space to create a new event, or click the Add event link. Double click the Keyboard
object, since it contains the On key pressed condition.

A list of all the Keyboard object's conditions appear. Double-click the On key pressed event.

Construct 2 needs to know which key you want to detect. Click the <click to choose> button, hit the
left arrow key, then press OK. Click Done.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12905/addkeyboardevent_2.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12906/onkeypressedevent.png

Now we want to add our action: "Set player mirrored". As before, first you pick the object, then you
pick the type of condition or action, then you enter any parameters. Click the Add action link to the
right of the event. (Make sure you don't accidentally click Add event!)

Double-click Player.

Double-click Set mirrored.

Leave the state on Mirrored and click Done.

You should now have this:

Now add another event - double click a space, or click the Add event link.

This time go through the process again, but make the event On right arrow key pressed, and set the
player Not mirrored. You should end up with this:

Now when we press left the player's image will mirror, and when we press right it restores the right-
facing image. Run the game and try it out!

Adding more animations

Let's get the rest of the player's animations added. First, let's add some more platforms for the player to
jump around so we can more easily see how the animations work.

Switch back to the Layout View where you can see the player and floor tiles. Click and drag to select
all three tiles. Then, hold Control and drag the tiles to clone them. Do this a few times so there are
some platforms to jump around. It might help to zoom out for this.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12907/onleftarrowpressed.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12908/setmirroredevent.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12909/mirroringevents.png

To give us a better view, let's also make the window size a bit bigger. Click the name of the project at
the top of the Project Bar to show the project's properties. Change the Window Size to 800, 600.

Now that we have somewhere to jump to, with a bigger window size so we can see more, let's get
going adding the rest of the player animations.

Remember we're using the Set mirrored action to automatically flip the player left and right. So we
only need to import animations for the player facing right.

You are going to have to fix up some sprite sheets to use them in Construct 2. The big files are in the
folder but the sprites are a bit too close together. You have to make a new document in Photoshop and
then use the selection box to select and copy the images you need to it.

Here’s what I did for idle. First, I copied the four images to a new document with the selection tool and
cut and paste.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12910/threeplatforms.jpg
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12911/biggerwindowsize.png

Then I erased the background layer after using rulers to carefully and pretty equally space out the
sprites.

Then hold the shift key down and select all the layers, then right click to merge them. You need a
transparent background. If the background goes white, you didn’t do it right. CTRl+Z and try again.

Double-click the player in the Layout View to bring up the animations editor. There are four
animations you will make:

1. Idle to run (tween)

2. Run

3. Jump from run

4. Jump from stand

Once you have created these animations, you can save them as .png (to keep the transparent
background) and them follow the steps below.

For each of these animations, the process to add them is as follows:

1. Right-click in the Animations bar (by default, floating to the right and listing the Idle animation)
and select Add animation.

2. Enter the name of the animation. You might want to give easier to remember names like IdleToRun.

3. Left-click the animation to switch to it. It should have a single empty frame.

4. Right-click in the Animation frames bar (by default, at the bottom, listing the animation frames)
and select Import sprite strip....

5. Locate the sprite strip. Note in the Jungle sprite pack each frame is also available as a separate PNG
file. The frames can be imported that way, but usually it's quicker to use the sprite strip version, so
select the image with the complete strip.

6. Check the number of cells is right, then click OK.

7. Delete the first empty frame which we don't need any more.

8. In the first frame, place the origin by the player's feet. Try to get it to match the position in the Idle
animation. Apply the origin to the entire animation as we did with the Idle animation (right-click the
Origin in the Image Points dialog and select Apply to whole animation).

8. Hold shift and press Crop to crop all the imported frames at once, removing the unnecessary
transparent areas.

9. In the Properties Bar, make sure each animation has the following properties:

Speed: 22 for JumpFromStand, 15 for everything else

Loop: Yes for Run, No for everything else

Do this for each animation, so finally there are five animations for the player.

Close the animation editor. Now we need to tell the player to switch to the appropriate animation at the
appropriate time. To do this, the platform behavior provides animation triggers - events which run
when the player should change animation. Then we just use the player's Set animation action.
Remember the Platform behavior (with the animation triggers) is on the PlayerBox object, and then we
want to set the animation of the visible Player object.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12912/platformanimations.png

Also note we have an IdleToRun animation. This means when we start moving, the animations go like
this:

Stopped: Idle

Start moving: IdleToRun

When IdleToRun finishes: Run

This is also easy to set up with events.

Setting up the animation events

Hopefully by now you're familiar with the process for creating an event:

1. Select the object.

2. Select the condition or action.

3. Optional: enter parameters if the condition or action has any.

Switch back to the Event Sheet View. First of all, let's set the animation to IdleToRun when we start
moving, using the Platform Behavior's On moved trigger in the PlayerBox object:

When the IdleToRun animation finishes, we then want to switch to the Run animation. We can do this
using the On animation finished trigger in the Player object:

If the player is running then they stop, we need to switch back to the Idle animation. We can do this
with the On stopped animation trigger in the PlayerBox object:

Run the game. The player should now be able to switch from running to stopped, with the IdleToRun
animation playing in between. However, the jump animations don't play yet. Since we have two Jump
animations, we also need to set a different animation depending on whether the player is running or not
when they jump. This can be done with the following event:

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12913/platformanimationevent1.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12914/platformanimationevent2.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12915/platformanimationevent3.png

Notice here sub-events have been used - they appear indented beneath the On jump event. Sub-events
are each checked after the "parent" event has run. This correctly implements our logic: when the
Platform behavior jumps, if they are moving, set JumpFromRun; otherwise, set JumpFromStand.

To make a sub-event, right-click the parent event and select Add -> Add sub-event, or select it and
press S.

To make the above event you'll also need to invert a condition (appearing as the red cross). Inverted
conditions mean the opposite of what they state. In this case, the inverted "Platform is moving"
condition then means "Platform is NOT moving". To invert a condition, add it normally, then right-
click on it and select Invert. Alternatively, select it and press I.

There is just one more thing we need to do: the player will remain on their Jump animation after
jumping, even after they land, unless we set the animation back to Idle or Run when they land. This is
very similar to the previous event: in the On land animation trigger, if they are moving, set "Run";
otherwise, set "Idle".

Once you've set this all up, run the game. Congratulations - you've now made a fully animated player
character! Notice how the different animations play if you jump from standing still, or jump from
running. Also see how when you land from a jump, you either go back to Idle or Running depending on
whether you are moving or not.

Now, time to make an enemy!

Adding an enemy
Hopefully you're familiar with the process of adding sprites and animations now. So for conciseness the
steps in full won't be repeated. Let's add a new sprite for an enemy.

1. Add a new Sprite object in the layout.

2. Import the Enemies\Snail sprite strip.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12916/platformanimationevent4.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12917/platformanimationevent5.png

3. Delete the first empty animation frame.

4. Set the animation to looping, speed 15.

5. Set the origin to the base of the snail image, and apply it to the whole animation.

6. Crop all the frames (shift + crop).

7. Close the animation editor and rename the object to 'SnailEnemy'.

8. Place it on a ground tile as shown.

Now we want to implement the following logic:

- If the player runs in to the snail from the side, they flash and get hurt.

- If the player jumps on top of the snail, the snail is killed.

To make the player flash, select the player and add the Flash behavior. Remember to select the actual
player, not the PlayerBox object (since it is the visible player we want to flash). We'll use the 'Flash'
action from this behavior in a moment.

Switch to the event sheet view, and add a new event:

PlayerBox -> On collision with another object -> SnailEnemy

This event runs when we collide with the SnailEnemy from any angle. We can then use sub-events to
test whether the player is jumping on top or running in from the side. Let's first test if the player is
above.

Add a sub event to the collision event:

PlayerBox -> Is falling

We should also test the player is actually above the enemy. This can prevent the snail accidentally being
killed if we fall past it off a ledge, say. Right-click the 'Is falling' condition and select 'Add another
condition'. Remember, all conditions must be met for the event to run. Add the condition:

PlayerBox -> Compare Y -> Less than, SnailEnemy.Y

The Y axis increases downwards, so if the player's Y co-ordinate is lower than the snail's, they are
above it.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12918/snailenemy.png

In this event, add the action:

SnailEnemy -> Destroy

We can also make the player bounce off it by adding another action:

PlayerBox -> Set vector Y -> -700

'Set vector Y' basically just sets the vertical speed of the platform movement; setting it to a negative
value sets it upwards (again, the Y axis increases downwards), and 700 is a little less than the jump
strength of 1100. So this will make the player bounce off as if they did a weak jump.

We're not quite done: right-click the margin of the 'Is falling' event (the space just to the left of the
PlayerBox icon) and select Add -> Else. 'Else' is a special condition that runs if the previous event did
not run. So this event will run if we collided with the snail but we weren't jumping on top of it - we ran
in to it from the side, say. In this event we want the player to be hurt. Add the action

Player -> Flash -> (leave default values and click Done)

Remember the Flash behavior is in the Player object, not PlayerBox.

OK, so the player will never die, they'll just flash. But we've got the detection set up of whether they
jumped on top or ran in to the side. This tutorial won't cover all the bells and whistles, but hopefully
you can see where to create kill effects (try creating a 'poof' sprite on the SnailEnemy when it is
destroyed, using the SnailEnemy's 'Spawn object' action) and where to take off health (in the event that
makes the player flash - you can learn about health using instance variables in the top-down shooter
tutorial which you might want to look at afterwards).

Let's make the snail enemy move back and forth across the platform.

http://www.scirra.com/tutorials/37/beginners-guide-to-construct-2
http://www.scirra.com/tutorials/37/beginners-guide-to-construct-2
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12919/jumpfromaboveevent.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12920/finishedjumpabove.png

Moving the enemy

The main problem with moving the snail is how to detect when it's reached the edge of a platform. The
easiest way to do this is with invisible 'edge' markers. These are just invisible sprites that flip the
direction of the snail when it touches them.

We can also use the Platform behavior again for the snail. This is convenient because:

- it can get it moving left and right

- it will go up and down slopes just like the player can

- it will fall off ledges if you want it to

- if you want to make a jumping enemy, you can make the enemy automatically jump too using the
'simulate control' action.

Add the Platform behavior to the SnailEnemy sprite. Since we are not using complicated
animations on this object, we can get away with using the platform behavior directly on the object
without an invisible 'box' object. Note if you make a different platform game with enemies with
complicated animations, you should use the same box technique we used on the player.

We don't want the player to control the SnailEnemy - we want to automatically control it. We can do
this by setting its Default controls property to No, then using the Simulate control action. Since snails
are also pretty slow, set the Max speed to 50 and its Acceleration and Deceleration to 100!

We'll also need our 'Edge' markers. Add a new Sprite object and just load in an opaque rectangle. Call it
EdgeMarker. Size the object to about 40 x 40 and set its Initial visibility to Invisible so we don't see it.
Place one at each end of the snail's platform like so: (don't forget you can create a new instance by
control+dragging it)

The snail also needs to know which way it is currently moving - either left or right. We can do this with
instance variables. These are simply numbers or text stored in each instance of the object. If we have
multiple snails, they each store their instance variables separately. This allows them to have unique
values for their health, current direction, and so on. A simple technique to control enemies
automatically is to create an "action" instance variable which holds its current state. For example, it
could be "run away", "chase player" or "idle". In this case we only need "left" and "right", but it's
useful to set it up the same way.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12921/snailmarkers.png

Select the SnailEnemy object. In the properties bar, click Add / Edit under 'Instance variables'.

A dialog listing all instance variables for the object appears. Click the 'add' icon to add a new one. Set
the name to action, the type to text, and the initial value to right (for moving right).

Click OK and close the instance variables dialog. Switch to the event sheet.

We want to implement the following logic:

- if action is "right", simulate the platform movement holding the 'right' key to move the snail right.

- if action is "left", simulate the platform movement holding the 'left' arrow key to move the snail left.

Also:

- if the snail hits the EdgeMarker, flip its action (if "left" set it to "right"; if "right" set it to "left").

We can set up the movement with the following two events:

Event: SnailEnemy -> Compare instance variable -> action equal to "right" (use double quotes here to
indicate text)

Action: SnailEnemy -> Simulate control -> Right

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12922/platforminstancevars.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12923/actioninstancevar.png

It should be straightforward to do the same for left. We also want the image to mirror left and right like
we did for the player. So add SnailEnemy -> Set mirrored in the "left" event, and SnailEnemy -> Set
not mirrored in the "right" event. You should finish with this:

Now to flip the snail's direction on the edges:

Event: SnailEnemy -> On collision with another object -> EdgeMarker

Subevent: SnailEnemy -> Compare instance variable -> action equal to "right"

Action: SnailEnemy -> Set value -> action to "left"

Subevent: Else

Action: SnailEnemy -> Set value -> action to "right"

It's important to use Else here, because events are run from top-to-bottom. If instead of 'else' we said
'action equal to "left"', notice the previous event would have just set it to that. So it'd just set it right
back again, having no overall effect. By using 'else', we prevent the second event running if the first
was true.

Run the project. Notice the snail is moving back and forth on its platform. This makes it a bit harder to
jump on! This is a very rudimentary "AI" system, but hopefully you can imagine that you could create
more intelligent enemies by controlling the movement with more events, possibly even allowing them
to fall off edges, or using other markers to trigger a jump to make it look like the enemy knew to jump
up on to a platform.

Try creating a platform with two snails on it. Notice they control themselves individually, since they
each have their own individual action instance variable holding their current state. Hopefully you can
begin to see how important instance variables are for controlling instances independently - they don't
all have to be doing exactly the same thing as each other!

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12924/snailcontrolevents.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12925/snaildirectionevents.png

Jump-thru objects
If you place some tiles around, you might notice if you jump in to a tile from underneath you hit your
head on it and fall back down. What if you want to make platforms you can jump on to from
underneath? This is what the Jump-thru behavior does. Like the Solid behavior you can stand on it
with the Platform behavior, but the player can jump on to it from underneath.

Let's make a Jump-thru version of our Tile object. Right-click the Tile object and select Clone object
type. This will make a separate object type, Tile2, which can have different behaviors. Delete the Solid
behavior and add the Jump-thru behavior.

Use tiles 134 and 135 to make a jump-thru like this:

Run the game. Notice how you can jump on to it from underneath.

Hopefully you now know enough to design a whole level! Here's a zoomed out level design I put
together quickly while writing the tutorial. It might help show you some of the possibilities. Notice the
use of markers across platforms to keep the snails on their platforms.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12926/twosnails.png
https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12927/jumpthru.png

Parallax

Try adding a parallax effect to make the background seem further away. Select the Background layer in
the layers bar. In the properties bar, set the Parallax property to 50, 50 (which means half speed
scrolling). Notice how the background moves slower, giving a distance feel. Using multiple layers all
with different parallax rates can create an almost 3D feel to a 2D game.

Conclusion
This tutorial covered a lot. You may want to revise it some time. Here are some of the key points:

- For the player's Platform behavior, always add the movement to an invisible box with no animations.
Position the visible, animated player sprite on top of the box. This will prevent animations causing
glitches in the platform movement.

- Levels can be built out of tiles.

- The Set mirrored action saves you having to make mirrored copies of all your animations.

- Animations sometimes need some work to get imported, set up with the right speed and looping
properties, with the right origin set, and all frames cropped. You may also want to alter the collision
masks, although this was not covered.

- Enemies can also be controlled with the Platform behavior. Set Default Controls to No and use the
Simulate control action to automatically control movement.

- You can detect if the player is falling on an enemy rather than running in to them by testing if they are
both falling and above the enemy on the Y axis when colliding. Otherwise (using 'Else'), they must be
running in to the enemy, and they should get hurt.

- Instance variables can store numbers or text unique to each instance of an object. This helps control
objects individually, which is useful for "AI".

- Edge markers are a quick and easy way to make enemies go back and forth on a platform.

- Jump-thru are platforms that can be jumped on to from underneath.

https://s1.construct.net/images/v667/uploads/articleuploadobject/0/images/12928/leveldesign.png

- Parallax is an easy and intriguing effect to add to platform games.

Obviously we have not made a full platform game! However, this tutorial has covered the most difficult
bits, and the important essentials every platform game creator should know in advance. From here on
hopefully you have an idea of how the rest of a platform game is going to come together. It takes time
to get familiar with a complex development tool with Construct 2. However, experimenting can be fun,
and teach you a lot! So spend a while playing around, breaking things, tweaking things, and see what
you can come up with. Happy platforming!

	Getting started
	Size the layout
	Adding a layer

	Adding tiles
	Creating scenery from tiles
	Enabling snap to grid

	Adding the Player sprite
	Cropping
	Setting the origin
	Loop the animation

	Adding behaviors
	Adding the Solid behavior
	Creating events
	Problems
	Adding more animations
	Setting up the animation events

	Adding an enemy
	Moving the enemy

	Jump-thru objects
	Parallax

	Conclusion

